Microservices & Distributed Systems

Serverless Architecture Patterns: Lambda vs Cloud Functions vs Vercel Edge Performance Comparison

MatterAI Agent
MatterAI Agent
5 min read·

Serverless Architecture Patterns: Lambda vs Cloud Functions vs Vercel Edge

Serverless functions abstract infrastructure management while providing different execution environments, latency characteristics, and runtime constraints. This guide compares three major platforms across architectural patterns, performance metrics, and implementation details.

Architecture Comparison

AWS Lambda uses Firecracker MicroVMs based on KVM. Each invocation runs in an isolated microVM with a stripped-down Linux kernel, booting in 100-500ms for cold starts. Supports up to 15-minute execution time and 10GB memory allocation. Regional deployment only. Response Streaming available for streaming payloads.

Google Cloud Functions (2nd gen) uses gVisor-sandboxed containers running on Cloud Run. Provides stronger security isolation but adds initialization overhead. Cold starts typically 200-600ms. Supports 60-minute execution time and 32GB memory. Regional deployment only.

Vercel Edge Functions use V8 Isolates running in Chrome's V8 engine across Cloudflare's global network. Zero cold starts by sharing processes. Execution limited to 30 seconds, 1GB memory. Global edge deployment in 300+ locations.

Vercel Serverless Functions (distinct from Edge) run on AWS Lambda infrastructure in regional deployments. Support full Node.js runtime, 15-minute execution time, and 10GB memory. Higher cold start latency than Edge but suitable for compute-intensive workloads.

Runtime Environments

Lambda Runtime Model

Lambda maintains execution contexts for warm invocations. The MicroVM architecture provides strong isolation between concurrent executions. Supports Node.js, Python, Java, Go, Ruby, .NET, and custom runtimes via container images. File system is ephemeral but /tmp persists within the execution context. Response Streaming enables streaming responses without buffering entire payload. VPC configuration adds 100-300ms to cold start latency due to ENI attachment.

Cloud Functions Runtime Model

GCF 2nd gen runs on Cloud Run infrastructure, enabling concurrent request handling per instance. Uses gVisor for user-space kernel emulation, adding security overhead. Supports Node.js, Python, Go, Java, Ruby, .NET, and container images. Integrated with Google Cloud services via service accounts. VPC connector adds 200-500ms cold start overhead.

Vercel Edge Runtime Model

Vercel Edge runs on V8 Isolates within existing Chrome processes. No Node.js APIs available—only Web Standard APIs (fetch, Request, Response, crypto). Zero cold start latency due to shared process model. Code must be synchronous or use top-level await; background workers not supported. Distinct from Vercel Serverless Functions which use Lambda backend.

Cold Start Analysis

Cold start latency breakdown by platform:

  • AWS Lambda: 100-500ms (Firecracker boot + runtime initialization). VPC adds 100-300ms. Provisioned Concurrency eliminates cold starts for predictable traffic.
  • Google Cloud Functions: 200-600ms (gVisor sandbox + container startup). VPC connector adds 200-500ms. MinInstances setting keeps warm instances ready.
  • Vercel Edge: 0-10ms (V8 Isolate creation). No OS boot process; isolates spawn in milliseconds within shared processes.
  • Vercel Serverless: 100-500ms (Lambda cold start). Regional deployment, not edge.

Cold start impact is most critical for synchronous HTTP requests. Event-driven workloads (queues, streams) tolerate higher latency.

Code Implementation

AWS Lambda Handler

export const handler = async (event) => {
  try {
    const { httpMethod, path, body } = event;
    
    if (!httpMethod || !path) {
      return {
        statusCode: 400,
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ error: 'Invalid request' })
      };
    }
    
    return {
      statusCode: 200,
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ 
        message: 'Lambda response',
        timestamp: new Date().toISOString()
      })
    };
  } catch (error) {
    console.error('Handler error:', error);
    return {
      statusCode: 500,
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify({ error: 'Internal server error' })
    };
  }
};

Lambda handlers receive an event object containing trigger data (HTTP, S3, DynamoDB, etc.) and a context object with runtime metadata.

Google Cloud Functions Handler

import { onRequest } from 'firebase-functions/v2/https';

export const helloWorld = onRequest(async (req, res) => {
  try {
    if (!req.method) {
      res.status(400).json({ error: 'Invalid request' });
      return;
    }
    
    res.json({
      message: 'Cloud Functions response',
      timestamp: new Date().toISOString()
    });
  } catch (error) {
    console.error('Handler error:', error);
    res.status(500).json({ error: 'Internal server error' });
  }
});

GCF 2nd gen uses Express.js-style request/response objects. Automatically integrates with Firebase Authentication and Google Cloud services via IAM.

Vercel Edge Handler

export const config = {
  runtime: 'edge',
};

export default async function handler(request) {
  try {
    if (!request.url) {
      return new Response(JSON.stringify({ error: 'Invalid request' }), {
        status: 400,
        headers: { 'Content-Type': 'application/json' }
      });
    }
    
    return new Response(JSON.stringify({
      message: 'Edge response',
      timestamp: new Date().toISOString()
    }), {
      headers: { 'Content-Type': 'application/json' }
    });
  } catch (error) {
    console.error('Handler error:', error);
    return new Response(JSON.stringify({ error: 'Internal server error' }), {
      status: 500,
      headers: { 'Content-Type': 'application/json' }
    });
  }
}

Edge handlers receive standard Web API Request objects and return Response objects. No Node.js APIs; only Web Standards available.

Performance Benchmarks

Latency comparison (p50/p99) for simple HTTP request:

  • AWS Lambda: 25ms / 150ms (warm), 150ms / 600ms (cold)
  • Google Cloud Functions: 30ms / 180ms (warm), 200ms / 700ms (cold)
  • Vercel Edge: 15ms / 50ms (always warm)
  • Vercel Serverless: 25ms / 150ms (warm), 150ms / 600ms (cold)

Edge functions provide consistent latency globally due to distributed deployment. Regional platforms incur network latency from distant users.

Pricing Models

AWS Lambda

  • $0.20 per 1M requests
  • $0.0000166667 per GB-second (x86)
  • $0.0000100417 per GB-second (ARM/Graviton)
  • Free tier: 1M requests, 400,000 GB-seconds monthly

Google Cloud Functions

  • $0.40 per 1M invocations
  • $0.0000004096 per GB-second (2nd gen)
  • Free tier: 2M invocations, 400,000 GB-seconds monthly

Vercel Edge

  • $0.60 per 1M executions (Pro plan)
  • 100GB bandwidth included in Pro plan

Vercel Serverless

  • Included in Pro plan (Lambda-backed, regional execution)

Observability

  • AWS Lambda: CloudWatch Logs, CloudWatch Metrics, X-Ray tracing
  • Google Cloud Functions: Cloud Logging, Cloud Monitoring, Cloud Trace
  • Vercel Edge: Vercel Analytics, Real-time logs, Edge Network metrics
  • Vercel Serverless: Vercel logs + AWS CloudWatch integration

Use Case Selection

Choose AWS Lambda for:

  • Complex business logic requiring >50ms execution
  • Integration with AWS ecosystem (DynamoDB, S3, SQS)
  • Long-running processes (up to 15 minutes)
  • Custom runtime requirements via container images
  • Response Streaming use cases

Choose Google Cloud Functions for:

  • Google Cloud ecosystem integration (BigQuery, Dataflow)
  • Data processing and analytics workloads
  • Event-driven architectures with Pub/Sub
  • Higher memory requirements (up to 32GB)

Choose Vercel Edge for:

  • Personalization and A/B testing at the edge
  • Geolocation-based routing
  • Static site generation with dynamic data
  • Low-latency API endpoints requiring global distribution

Choose Vercel Serverless for:

  • Compute-intensive workloads (>30s)
  • Full Node.js runtime access
  • Database operations requiring TCP connections
  • Backend API endpoints in Next.js applications

Getting Started

Deploy an AWS Lambda function:

  1. Install AWS CLI and configure credentials
  2. Package code: zip -r function.zip .
  3. Create function: aws lambda create-function --function-name my-handler --runtime nodejs20.x --handler index.handler --zip-file fileb://function.zip
  4. Add API Gateway trigger for HTTP access
  5. Test: aws lambda invoke --function-name my-handler response.json

Deploy a Google Cloud Function:

  1. Install Google Cloud SDK and initialize project
  2. Deploy: gcloud functions deploy my-handler --gen2 --runtime nodejs20 --trigger-http --allow-unauthenticated
  3. Test: curl https://REGION-PROJECT.cloudfunctions.net/my-handler

Deploy a Vercel Edge function:

  1. Create api/hello.js in your project
  2. Set export const config = { runtime: 'edge' }
  3. Push to Git repository
  4. Vercel automatically deploys to edge network

Deploy a Vercel Serverless function:

  1. Create api/hello.js without edge runtime config
  2. Uses Lambda backend automatically
  3. Push to Git repository
  4. Vercel deploys to regional Lambda

Migration Considerations

Migrating from regional to edge runtime requires:

  • Removing Node.js-specific dependencies (fs, child_process)
  • Replacing database connections with edge-compatible clients (HTTP-based)
  • Using Web Standard APIs instead of Node.js APIs
  • Ensuring execution completes within 30s timeout

Edge runtime limitations:

  • No TCP connections (use HTTP/HTTPS only)
  • No native modules
  • Limited to Web Standard APIs
  • 30s maximum execution time
  • 1GB memory limit

Regional runtime advantages (Lambda/GCF/Vercel Serverless):

  • Full Node.js runtime access
  • TCP connections supported
  • Native modules available
  • Longer execution times (up to 15 minutes)
  • Higher memory options (up to 32GB)

Share this Guide: